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ABSTRACT

Present paper deals with different components of next generation phenomics for characterizing rice genotypes
for water deficit stress. Major sensors used in the study were non-imaging hyperspectal remote sensing, thermal
imaging at ground platform and RGB and multispectral imaging sensors from drone platform. Different spectral
indices were evaluated along with new proposed index and different multivariate models were studied for non-
invasive estimation of relative water content (RWC) and sugar content in rice plant using spectral reflectance
data collected in spectral range 350 to 2500 nm. Spectral data were further used for spectral discrimination of
rice genotypes. Crop water stress index derived from thermal images acquired for rice genotypes could well
characterize the drought resistant and sensitive genotypes. Initial study on field phenotyping through drone
remote sensing using multispectral and RGB sensor was also explored to capture differential response of
genotypes, trait and heat map mapping. All developed protocols as reliable alternative to conventional methods
are fast, economic and non-invasive and in use in plant phenomics centre for high throughput plant phenotyhping
for water deficit stress studies.
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INTRODUCTION

Rice is one of the staple food crops for approximately
half of the global population and rice production must
increase by 70% by 2050 to satisfy the requirements
of the growing world population (Godfray et al., 2010).
India accounts for 20% of the world rice production
(Ministry of Agriculture & Farmers Welfare, 2017).
Hence it is necessary to maintain rice productivity for
the food security of our country and the world. Further,
it is estimated that rice production must be enhanced
by 40% to feed 5 billion people by 2030 (Khush, 2005).
Fresh water scarcity is a looming threat for agriculture
production and specifically rice cultivation in near
future. Rice accounts for about 50% of irrigation water,
and thus rice cultivation is expected to be unsustainable
in future as the per- capita water availability is expected
to decline by 15 to 54% in most river basins of by the
year 2025 (Guerra et al., 1998). Besides, rainfed
lowland and upland rice is cultivated in about 45% of

the rice-grown area in the country, which are subjected
to intermittent soil moisture deficit that causes severe
yield loss. Breeding crops for high water use efficiency
(WUE) is essential to produce more crops in the
dwindling fresh water scenario to secure food security,
pursuing the slogan "more crop per drop" (Monaghan
et al., 2013). Drought which is very frequent in tropical
country like India is the most devastating abiotic stress
affecting crop productivity (Toker et al., 2007).
Therefore, genetic improvement in water use efficiency
(WUE) and drought tolerance of rice is a priority
research target for food security as well as minimizing
agricultural water use.

Recent advances in crop physiology, systematic
plant phenotyping and genomics  helps  to gain new
insights in drought tolerance, thus providing crop
breeders with greater knowledge of the gene networks
and providing new tools for plant improvement to
increase crop yield (Tuberosa and Salvi, 2006). The
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advances in the genomics during the past one decade
offer great potential for genetic enhancement in yield
and adaptability of crops. With the availability of next
generation sequencing and automated genotyping
technologies, generating accurate genotypic data for a
large set of germplasm and breeding population has
become easier. However, a limitation in using the
genomic information for crop improvement is the costly
and time-consuming processes of deciphering the
phenotype that arises from the interaction of genome
with environment. Conventional phenotyping methods
are laborious, time consuming and not very precise.
Thus phenotyping is the major bottleneck that limits
utilization of the power of genomics for identification
and use of novel genotypes, high-resolution linkage
mapping, genome-wide association mapping and training
genomic selection models for crop improvement. The
multi-disciplinary science of phenomics, the sensor aided
non-destructive high throughput automated acquisition
and analysis of high-dimensional phenotypic data on an
organism-wide scale, emerged recently to bridge the
phenotype-genotype gap and enhance the pace of
analytical breeding (Kumar et al., 2014). Next
generation phenomics, the study of plant growth,
performance, and composition, utilizes new technologies
to better characterize plant responses to the
environment and also better describes the growth
environment itself (Furbank and Tester, 2011).
Phenomics can also provide a platform wherein non-
invasive biological data can be collected on a large
number of plants simultaneously, providing observations
of plant behaviour that have been unavailable via
traditional phenotyping techniques and destructive
harvests, e.g., chlorophyll fluorescence for
photosynthetic performance or hyperspectral imaging
for measuring leaf constituents. Further, introduction
of time axis by the use of non-destructive phenomics
methods in QTL analysis revealed genetic dynamics of
complex traits such as biomass, yield and stress
responses.

Next generation phenomics for mapping crop
traits has majorly three components such as (i)
Phenotyping platform - growth chamber, climate
controlled greenhouse and experimental fields, (ii)
Imaging sensors and image acquisition and (iii) data
analytics and algorithms for phenotyping. High-
throughput phenomics advances needs to occur across

scales of phenotyping platforms for sustained and
increased crop yields. Field trials and growth chamber
has its own advantages, disadvantages and application.
Growth-chamber and greenhouse-based phenotyping
platforms offers the advantage of increased
experimental cycling and greater environmental control,
but are often restricted by pot growth and the spectrum
of environmental conditions (Fahlgren et al., 2015).
Field platforms on the other has the advantage of
growing crop-sized plants under natural settings, but
are constrained to seasonal growing conditions. Even
after this, field trials remain essential for the studies
relating to growth and yield assessment for which
imaging solutions are being developed (Corp et al.,
2003; Rodriguez et al., 2005). Now days, aerial-based
phenotyping platforms are increasingly becoming
popular as it enables the rapid characterization of many
plots within minutes unlike, ground based phenotyping.
Unmanned aerial platforms like-drones have greater
flight control and autonomy and are becoming
increasingly affordable (Araus and Cairns, 2014). It
also offers us with the capability to record data of crop
traits throughout the crop life cycle. The potential to
assess traits, such as adaptations to water deficits or
acute heat stress, several times during a single diurnal
cycle is especially valuable for quantifying stress
recovery (White et al., 2012). Digital camera technology
has become relatively inexpensive and ubiquitous,
leading to a recent surge in high-throughput phenotyping
systems that utilize plant imaging to capture data
(Fahlgren et al., 2015). This allows measurement of
the physiological, growth, development, and other
phenotypic properties of plants through automated
processes. Imaging techniques are used to quantify
complex traits under related growth, yield and
applications to stress for plant phenotyping in controlled
environmental systems (in growth chambers or in the
greenhouse) or in the field for example Berger et al.
(2010) used high-throughput shoot imaging to study
drought responses, White et al. (2012) used field based
phenomics for plant genetics research etc.
Hyperspectral imaging is a promising technology for
the detection of abiotic and biotic stresses. Multispectral
and hyperspectral cameras are of high importance for
phenomics as it collects information in a wide range of
wavelength and thus helping in better characterization
of traits. ICAR- Indian Agricultural Research Institute
(IARI) has state of the art Nanaji Deshmukh Plant
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Phenomics Centre for carrying out plant phenotypic
experiments on major crops. The phenomics centre has
different imaging platforms to capture wide range of
images from visual color imaging, thermal infra-red
imaging, near infra-red (NIR) imaging, chlorophyll
fluorescence imaging, visible-near infra-red (VNIR),
hyperspectral imaging and short-wave infra-red (SWIR)
hyperspectral imaging at different angles. In the
meanwhile, many methodologies have been developed
for analysis of the images from all these sensors. For
example, image analysis pipeline, HTPheno has been
developed which is implemented as a plugin for ImageJ
for high throughput plant phenotyping (Hartmann et al.,
2011). Methods for the segmentation and the automated
analysis of time-lapse plant images from phenotyping
experiments in a general laboratory setting has also
been developed (Minervini et al., 2014). An open source,
flexible image analysis framework, called image harvest
(IH) has been developed for processing images
originated from high throughput plant phenotyping
platforms and its application has been presented using
rice crop (Knecht et al., 2016). On this backdrop, our
effort extends to develop a high throughput non-
destructive sensor (RGB, multispectral, hyperspectral
and thermal) based phenotyping of rice and to access
the plant water status under variable degree of water-
deficit stress. Some of the works discussed in this paper
are (i) Predictive model for relative water content
(RWC) and sugar content through spectrometry, (ii)
differential response of rice genotypes to water stress
and discrimination of rice genotypes, (iii) Thermal image
based study for water stress and (iv) drone remote
sensing for field phenotyping under differential
treatment of water and nitrogen content.

MATERIALS AND METHODS

The study was carried out at ICAR-Indian Agricultural
Research Institute (IARI), New Delhi research farms
(28°38'28.59"N, 77° 9'28.09"E). The soil is mostly well-
drained sandy loam. The minimum temperature is
recorded between 0°C to 7°C during the winter season
and the maximum temperature ranged between 41°C
to 46°C. The average annual rainfall is about 750mm.
The relative humidity (RH) is found to be the highest
during the monsoon season. In the summer months,
the RH is observed between 40 to 45%. Ten rice
genotypes, five drought sensitive i.e., MTU 1010,

Patchaiperumal, Pusa Basmati-1, Pusa Sugandha-5, IR
64 and five drought tolerant i.e., Sahbhagidhan, CR-
143, Nerica L44, Moroberekan, APO were grown with
three replications. All the genotypes were grown with
two moisture conditions i.e., maximum moisture stress
and well irrigated.

Excised leaf water loss experiment
The experiment  was conducted to understand
differential genotypic response to stress and
discrimination of rice genotypes. Thirty leaf samples
from another set of 14 rice genotypes (3 replicates
each) were collected in well-watered conditions from
the experimental fields for spectral measurements
followed by all biochemical analysis including relative
water content (RWC).

The thermal imaging  synchronised with the
digital image, were taken for all the genotypes grown
in field. The camera used was JenopticVariocam,
sensitive to the spectral range 7.5 µm to 14 µm with
spatial resolution 1024 x 768 pixels (0.270m x 0.2032m)
and thermal resolution of 50 mK and ±2.0% accuracy.
The thermal images from the middle of all the plots
were captured so that proper crop area from the plot
can be captured by the camera. The thermal images
from lateral view were also captured but subsequent
analysis showed that in a lateral view of a plot, leaves
of an adjacent plot may get captured from the gap
among plants. Therefore, all the analysis was done using
top canopy view of the genotypes. Both thermal and
digital images were clicked from nadir position at about
1.00 to 2.00 pm, when the crop plants were having
maximum day temperature, on a perfect sunny day and
less wind flow.

Crop water stress index (CWSI) images of rice
genotypes
The temperature based crop water stress index was
computed as proposed by Idso et al. (1981) and is given
as

Where, TC= Temperature of canopy

Tair= Air Temperature,
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Tl= Lower limit of canopy temperature from
well-watered crop

Tl = Upper limit of canopy temperature from
water stressed crop

dT = difference between canopy temperature
and air temperature

dTl = lower limit of canopy temperature minus
air temperature (well watered plants)

dTu = upper limit of canopy temperature minus
air temperature (completely closed stomata or Non-
Transpiring plants)

Four leaves sample per genotype for above
mentioned 10 genotypes were collected from the field
experiment site. Leaves were quickly placed in plastic
bags in an airtight container and immediately transferred
to the laboratory for spectroscopic measurements at
predetermined time intervals after making all samples
to a fully turgid condition till maximum water loss
condition. In the laboratory, the spectroscopic data of
above mentioned 10 genotypes were collected using
an ASD Field Spec-3 spectroradiometer for the spectral
range 350 to 2500 nm.

The water content in the leaves was analyzed
using relative water content (RWC) computation as
given below

Where, FW = Fresh weight of leaves,

DW = Dry weight (after oven drying),

TW = Turgid Weight

Spectral indices
Spectral indices for plant water studies utilize simple
ratios between the reflectance of a wavelength located
within an range of theelectromagnetic spectrum strongly
absorbed by water,described as water absorption bands,
and another wavelength located outside the water
absorption band typically used as a control (Sims and
Gamon, 2003; Eitel et al. 2006). Several water sensitive
vegetation indices were evaluated for estimation of
RWC. Also new indices were proposed based on
lambda versus lambda contour plotting approach and

identifying wavelength combination for maximum R2

for RWC (Sahoo et al., 2015). New proposed indices
has further been used for characterizing differential
response of rice genotypes to water deficit stress.

Multivariate analysis
Some of recently developed multivariate techniques
such as support vector regression (SVR), artificial
neural networks (ANN), random forest (RF) and the
partial least square regression (PLSR), PLSR followed
by multiple linear regression (MLR) and PLSR followed
by ANN were evaluated to determine the best suitable
multivariate model for spectral based prediction of
RWC. The overall performance and robustness of the
models were appraised by the coefficient of
determination (R2), root mean square error of cross-
validation (RMSECV), root mean square error of
prediction (RMSEP) and ratio of prediction deviation
(RPD) and upper and lower confidence intervals of
regression at 95% confidence level.

Spectral discrimination analysis
An hierarchical spectral analysis method based on three
integrated levels for spectral discrimination analysis and
these were one-way ANOVA to test if the differences
in the mean reflectance of 14 rice genotypes were
statistically significant. Following the one way ANOVA
with post-hoc Tukey HSD test, important wavebands
for spectral discrimination for the 10 rice (91 pairs)
genotypes were identified by counting, for each
waveband, the genotype pairs where the mean
reflectance difference was statistically significant.
Classification and regression trees (CART) as a part
of this second level of the hierarchical method to further
lessen the number of significant wavelengths acquired
from ANOVA analysis, with the purpose of reducing
data dimensionality using a nonparametric statistical
technique developed by Breiman et al. (1984) followed
by the separability index. i.e. Jeffries-Matusita (J-M)
distance analysis (Schmidt and Skidmore, 2003; Ismail
et al., 2007; Vaiphasa et al., 2007). The JM distance
between a pair of probability functions is the average
distance between two class density functions (Richards,
1993; Schmidt and Skidmore, 2003). The square of JM
varies between 0 and 2, with the higher values indicating
the total separability of the class pairs in the bands being
used (Richards, 1993; ERDAS Field Guide, 2005). In

( )
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this study we have decided to use separability values
³1.94 (³97% of 2) as a JM distance threshold for
spectral separability between class pairs, which is even
stricter than the value of 1.90 that is normally utilized
in remote sensing. The formula for calculating JM
distance is as follows (ERDAS Field Guide, 2005):

where i and j are the two species being
compared; Ci=the covariance matrix of the spectral
response of i species; mi=the mean vector of signature
of i; T=transposition function; ln=natural logarithm
function; |Ci|=the determinant of Ci.

Drone image acquisition and processing
Drone remote sensing was done in IARI experimental
field having 183 rice genotypes with 2 parental lines
grown during kharif season 2018 for acquisition of
RGB image and multispectral images using  Micasense
with red edge.  Image acquired was pre-processed and
different spectral indices were computed and evaluated
for biomass mapping and generated heat map for all
genotypes.

RESULTS AND DISCUSSION

Evaluation of rice genotypic response to water
deficit stress through thermal imaging
CWSI images of the ten rice genotypes were derived
from the thermal images. The mode values were also
computed for all the images so that the highest
occurring CWSI value can be quantified for a particular
image.The CWSI images of well watered or non-
stressed plants (Fig. 1a) prove the fact that lower CWSI
values exhibit no or very low water deficit stress in
plants. The CWSI values were observed in 0.00 to 0.5
ranges. The CWSI images of water deficit stressed
genotypes (Fig. 1b) demonstrated high CWSI values
and were found between 0.17 to 1.00 ranges. The
highest CWSI value depicting genotype was MTU1010.

Frequency distribution (Fig. 2) of CWSI values
for each genotype in both the stressed and non-stressed

conditions, were plotted. The plants with CWSI value
near zero reflect no water deficit stress whereas CWSI
value as 1 shows highest water deficit stress in the
plant. The frequency distribution plots clearly
demonstrated the response of all genotypes during
water deficit stress condition. The genotypes which
were kept under water stress exhibited a shift in
frequency towards the higher side (Fig. 2b) of the CWSI
values whereas genotypes of normal irrigation condition
were observed to stick around lower values of CWSI
(Fig. 2a). In this study, the crop canopies with water
deficit stress condition exhibit CWSI values between
0.4 to 1.0 ranges reflecting considerable drought
condition whereas CWSI values between 0.0 and 0.4
ranges reflect that the plants are showing negligible or
very low water deficit stress.

The rice genotypes Pusa Sugandha and APO
expressed high tolerance to water deficit stress whereas
CR-143, MTU 1010 and Pusa Basmati were discovered
to be highly susceptible to the drought condition (Fig.
3). The higher susceptibility to drought shown by MTU
1010, Pusa Basmati, IR-64 and Patchaiperumal was
found to be coinciding with their genetic trait of being
drought sensitive rice genotypes. The CR-143 is
genetically a drought tolerant genotype but in this study,
it demonstrated the highest drought affected
characteristics that could be due to a multitude of
unfavourable factors such as highest reduction in RWC,
lower membrane, and lower osmotic potential etc. In
this study, genetically drought sensitive genotypes i.e.
MTU 1010, Patchaiperumal, Pusa Basmati-1, IR 64
exhibited the same drought susceptibility also by CWSI
method.

Effect of water deficit stress on spectral signature
Normally the plants of a particular crop show a similar
pattern of reflectance spectra. But water deficit stress
conditions bring noticeable changes in reflectance
spectra. The study shows the reflectance patterns of
plants with different water deficit stress conditions i.e.
decline in relative water content. The water content
varies from 96.5% to 0.7%. The reflectance of the
fresh plant was less whereas the reflectance of the
dry plant was high (Fig. 4). The reflectance in SWIR
region increases as the RWC decreases from the
highest to lowest. The reason behind the increase in
reflectance is weakening of the water absorption

( )-α
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features at1400 nm and 1900 nm. A similar pattern of
increasing reflectance with a decrease in water content
was observed at 350 to 700 nm wavelength region.
The spectrum in the blue and red regions (chlorophyll a
and b absorption ranges) was showing a trend of higher
reflectance with decreasing water content due to loss
of chlorophyll. A shift of 1400-1925 nm wavelength
range towards shorter wavelengths was observed with
the drying of leaves and increase in spectral reflectance

is also visible. With the decrease in relative water
content, the absorption features in 1400 to 1500 nm
and 1850 to 1900 nm were seen as becoming shallow.
The reason behind the decrease in absorption is
weakening of water absorption features due to the
decrease in water content. The scattering in spongy
mesophyll at 810 to 1350 nm was also reflected a similar
trend of increasing reflectance with the decrease in
water content. In addition, absorption at the middle

Fig. 1. CWSI image for Ten Genotypes of Rice CropFields in  (a) Well watered condition and (b) Water Deficit Stress condition
depicts sensitivity of the crop to drought condition. Higher values of CWSI reflect high water deficit stress condition.

(a) (b)

Fig. 2. Quantification of response of rice genotypes to (a) the non-stressed (NS) and (b) stressed  condition using CWSI
images.

(a) (b)

Oryza Vol. 56 (Special Issue) 2019 (92-105)
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infrared (1100-2500 nm) is also a zone of strong
absorption, primarily by water in a fresh leaf and
secondarily by dry matter (e.g., protein, lignin and
cellulose) when the leaf wilts (Jacquemoud and Ustin,
2001), become more visible with decrease in RWC.

Relationship between spectral index and RWC
The relationship between conventional water band
indices with RWC was evaluated and revealed that the

maximum difference water index (MDWI) exhibits the
strongest correlation with R2 as 0.92 for both calibration
and validation sets (Fig. 5). The MDWI is computed
using the maximum reflectance value from max1500-
1750 nm and minimum reflectance value from min1500-
1750 nm located at the atmospheric window between
1500 and 1750 nm. The MDWI performed well because
it allows the best combination of numerator and
denominator from 1500 and 1750 nm wavelength range.
This dynamism of choosing better absorption features,
under varying plant water-deficit stress conditions
provides better results (Eitel et al., 2006; Peñuelas et
al., 1997).

The lambda versus lambda contour plotting
approach has the advantage of providing an efficient
selection of the optimal combination of wavebands for
development of the effective spectral indices. The
contour maps of R2 values from linear regression
between RWC and all possible combinations of RSI
(Ratio spectral index-ratio approach) and NDSI
(Normalized difference spectral index -normalized
difference approach) reveal hotspot positions that have
high correlation values. In the present study, one highest
R2 value each for RSI and NDSI was extracted from
the hotspots which were found at 1233 and 1305 nm
combination. Therefore, on the basis of highest R2, the

Fig. 3. Identification and quantification of the highest drought sensitiveness in the ten rice genotypes thorough mode values
from CWSI images. Figure shows that during water deficit stress condition, APO and Pusa Sugandha-5 exhibited the highest
resistance to the drought whereas CR-143, MTU-1010 and Pusa Basmati-1 ascertained highest sensitiveness to the drought.

Fig. 4. Representative mean spectral reflectance observations
of the genotypes with decreasing RWC (%) in leaves of rice,
showing percentage of RWC and corresponding spectra at
different time intervals.

Sahoo et al.Next generation phenotyping
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best combinations selected were ratio index (R1233,
R1305) and normalized difference ratio index (R1233,
R1305) for RWC. The 2nd order polynomial equation
was found to be the best in predicting RWC with both
ratio index and normalized difference ratio index (R2

Cal=
0.94, RMSEP = 4.27; R2

Cal = 0.94, RMSEP = 4.28,
respectively) (Fig. 6). The  RSI and NDSI R2 values
for both calibration and validation have P-value as
<0.00001 and the result is significant at p < 0.05.

Multivariate techniques for RWC estimation
The PLSR followed by MLR was proved as the best
technique for RWC prediction model development, out
of all multivariate techniques evaluated through this

This study evaluated multivariate techniques
and indices based approach including contour plotting.
The comparison of results clearly reflects that use of
multivariate techniques enhances the prediction
capability of models significantly. The multivariate
techniques have many positive approaches compared
to conventional indices based approach like self-
identification and removal of outliers, use of
principalcomponents, ability to deal with multi-
collinearity, use of decision tree approach etc.
Multivariate techniques utilize all the water absorption
related bands which increase model's accuracy
considerably by unveiling improved sensitivity to

Fig. 5. The Calibration model developed through the relationship between MDWI and Measured RWC (%) and its validation.
(Calibration - N=55 & validation - N=25). The solid black line is regression line and dotted line is 1:1 line.

Fig. 6. The proposed Normalized Difference Ratio Index (R1233-R1305)/(R1233+R1305) for prediction of RWC. (Calibration -
N=55 & validation - N=25). The solid black line is regression line and dotted line is 1:1 line.

Oryza Vol. 56 (Special Issue) 2019 (92-105)



100r r

changes in the RWC whereas index-based approaches
use only two or three prominent water absorption bands.
This study has successfully applied the MLR and ANN
models on PLSR selected optimum wavebands which
increased the accuracy of model significantly. Use of
PLSR selected optimum wavebands as input removed
the multi-collinearity problem in MLR, and provided
outliers free x variables to ANN; consequently,
improving the efficiency of the PLSR model. study.
The model equation developed through PLSR-MLR
techniques is also useful in monitoring water content in
rice crop. The second best model developed was the
combination of PLSR and ANN. The support vector
regression was also proved to be a useful technique
with satisfactory results. The SVR determines
maximum-margin hyperplane; therefore, it reduces the
prediction error. The ANN is vulnerable to outliers,
therefore when applied on the whole dataset; its
prediction was very poor. The random forest is an
ensemble tree classifier and has the goodness of decision
tree system. The RF proved as an intermediate
classifier compared to others. It was proved slightly
better over PLSR in this study. In the PLSR equation,
every coefficient has a RMSEerror associated with it
which makes it more susceptible todeviation (Krishna
et al., 2014), therefore PLSR model developed through
all of the x variables, produced intermediate results
compared to PLSR-MLR combination. The order
ofperformance of the multivariate models with respect
to R2 and RMSEP isas follows: PLSR-MLR>PLSR-
ANN> SVR >RF > PLSR > ANN (Fig. 7). This order
of performance is also supported by the value of RPD

for all models.

Multivariate technique for plant sugar estimation
Similar tospectroscopy based RWC estimation, the
potential of VNIR and SWIR spectra was also explored
for rapid quantification of sucrose, reducing sugars and
total sugars in rice as affected by water-deficit stress
without any chemical reagents. New proposed RSI and
NDSI were able to predict sugar content with good
accuracy. Among the multivariate models, the best
results were obtained using the ANN, SVMR and
MARS for reducing sugars, sucrose and total sugars,
respectively with respect to R2 values. Combing VNIR
and SWIR spectroscopy with chemometrics can provide
a rapid method for selection for rice genotypes for
water-deficit stress phenotyping (Das et al., 2018).

Differential response of rice genotypes to water
stress
The water loss behaviour of the different rice genotypes
with time starting from 1st spectral measurement within
2 hours of harvesting, T0 and last spectral measurement
after 27 hours at T11, is shown in fig.8. Among the rice
genotypes Pusa44 and IR64 showed least change in
the difference of RWC and Vandana showed the highest
change. But when the difference of index was
calculated for consecutive measurements, Vandana
showed the least change followed by IR64 and Pusa44;
Nagina22 and Pusa Basmati6 showed the highest
change. This happens due to least change in the plant
water content or least difference in leaf reflectance at

Fig. 7. Performance assessment of multivariate models as well as neural network models using R2and RMSEP of calibration
and validation.

Sahoo et al.Next generation phenotyping
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fully turgid and highest water loss conditions. So, these
genotypes were found to have more resistance towards
water stress. Dasgupta et al. (2015) also reported of
all multivariate techniques evaluated through this study.
The model equation developed through PLSR-MLR
techniques is also useful in monitoring water content in
rice crop. The second best model developed was the
combination of PLSR and ANN. The support vector

regression was also proved to be a useful technique
with satisfactory results. The SVR determines
maximum-margin hyperplane; therefore, it reduces the
prediction error. The ANN is vulnerable to outliers,
therefore when applied on the whole dataset; its
prediction was very poor. The random forest is an
ensemble tree classifier and has the goodness of decision
tree system. The RF proved as an intermediate

Fig. 8.  Differential response of rice genotypes to different stress level due to water loss at different time interval (T1 to T9) as
measured through RWC and proposed spectral index, NDSI.

Fig. 9.  Multispectral (MicaSense) image of Rice 2018 Field Experimentation taken from drone on 6 th October 2018.

Oryza Vol. 56 (Special Issue) 2019 (92-105)
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classifier compared to others. It was proved slightly
better over PLSR in this study. In the PLSR equation,
every coefficient has a RMSE error associated with it
which makes it more susceptible to deviation (Krishna
et al., 2014), therefore PLSR model developed through
all of the x variables, produced intermediate results
compared to PLSR-MLR combination. The order of
performance of the multivariate models with respect
to R2 and RMSEP is as follows: PLSR-MLR>PLSR-
ANN> SVR >RF > PLSR > ANN (Fig. 7). This order
of performance is also supported by the value of RPD
for all models.

This study evaluated multivariate techniques
and indices based approach including contour plotting.
The comparison of results clearly reflects that use of
multivariate techniques enhances the prediction
capability of models significantly. The multivariate
techniques have many positive approaches compared
to conventional indices based approach like self-
identification and removal of outliers, use of principal
Vandana as water-deficit stress tolerant variety under
field conditions. So the results of the spectral indices
based approach were found to be more effective to
differentiate the susceptible and tolerant genotypes as
compared to conventional destructive methods.

Spectral discrimination of rice genotypes
CART analysis was used to reduce the numbers of
significant bands (n = 1759) selected by ANOVA

analysis to fewer bands that could optimally separate
the rice genotypes. These spectral bands are: 350, 532,
553, 665, 717, 730, 823, 887, 910, 960, 1440, 1960, 1973,
1979, 2009, 2296 and 2313 nm for rice. From this
analysis we can infer that these seventeen wavelengths
for rice could potentially discriminate genotypes from
each other. The separability index (J-M distance) was
computed between each genotype pair as well as stress
levels utilizing the CART selected wavelengths. The
results revealed (Table 1) that separability between the
genotype pairs was greater than the required J-M
distance value of 1.94.

Field phenotyping using multispectral imaging
from drone platform
RGB images and multispectral image from micasense
with red edge camera captured from 60 m height on
6th October, 2018 was pre-processed and mapped as
true color composite and Blue band based normalized
difference vegetation index (BNDVI) (Fig. 9). Some
of the fields were found fallow as some  early genotypes
were harvested in control treatment with recommended
dose of irrigation and nitrogen. BNDVI was found the
best for biomass mapping having highest R2 of 0.59
(Fig. 10). It is the normalized difference ratio of energy
received in NIR and Blue bands of the sensor and
expressed as BNDVI = (NIR-Blue)/(NIR+Blue).
Based on BNDVI value, heat map of 182 genotypes
was prepared (Fig. 11) capturing their response to
differential treatment of drought and nitrogen.

CONCLUSION

In this study, thermal imageries were used to evaluate
the behaviour of genotypes during drought condition.
The susceptibility and resistance of genotypes to water
deficit induced stress were evaluated through analysis.
The mode values of normalized temperature and
frequency distribution curves of ten rice genotypes
were analysed and their behaviour to water deficit stress
was identified. CR-143, MTU-1010 and Pusa Basmati-
1 genotypes were found to be the highest sensitive
whereas APO and Pusa Sugandha-5 genotypes were
ascertained as the most tolerant genotypes to the
drought condition. This study successfully evaluates the
indices based, multivariate techniques based and neural
networks based approaches to predict relative water
content (RWC) under water deficit stress condition of

Fig.10. Heat map of BNDVI processed from drone
multispectral image of rice 2018 field experiment.
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rice genotypes with significant accuracy. Existing water
band indices were evaluated and new water band
indices sensitive to water stress were proposed. The
MDWI was found to be the best index among all
conventional existing indices. The newly proposed
indices outperformed all existing indices.

The multivariate model developed through
PLSR and MLR techniques (PLSR-MLR model)
proved to be the best ((yielded high R2 and low
RMSEP) followed by the model developed through
PLSR and ANN techniques (PLSR-ANN model) for
estimation of RWC in rice crop. Thus from this study it
may be concluded that timely detection of water deficit
stress is quite important for precision agriculture. Same
approach was used by authors for assessing sugar
content in rice plant through spectroscopy for selecting
rice genotypes for water deficit stress phenotyping.
Spectral based new proposed index (NDSI) for RWC
estimation was also evaluated for differential response
of genotypes to water deficit stress and was useful to
identify genotypes found to be relatively sensitive and
resistant to drought. Spectral signatures were could be
used to discriminate 14 rice genotypes and also their
stress levels using three tier hierarchical approach.
Drone based multispectral imaging could be used to
capture differential response of 182 rice genotypes
having treatment of drought and nitrogen.
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